Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation

نویسندگان

  • Moritz Kompenhans
  • Gonzalo Rubio
  • Esteban Ferrer
  • Eusebio Valero
چکیده

In this paper three p-adaptation strategies based on the minimization of the truncation error are presented for high order discontinuous Galerkin methods. The truncation error is approximated by means of a r-estimation procedure and enables the identification of mesh regions that require adaptation. Three adaptation strategies are developed and termed a posteriori, quasi-a priori and quasi-a priori corrected. All strategies require fine solutions, which are obtained by enriching the polynomial order, but while the former needs time converged solutions, the last two rely on non-converged solutions, which lead to faster computations. In addition, the high order method permits the spatial decoupling for the estimated errors and enables anisotropic p-adaptation. These strategies are verified and compared in terms of accuracy and computational cost for the Euler and the compressible Navier-Stokes equations. It is shown that the two quasia priori methods achieve a significant reduction in computational cost when compared to a uniform polynomial enrichment. Namely, for a viscous boundary layer flow, we obtain a speedup of 6.6 and 7.6 for the quasi-a priori and quasi-a priori corrected approaches, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Estimation and Adaptation in Hybridized Discontinous Galerkin Methods

This paper presents an output-based error estimation and adaptation strategy for hybridized discontinuous Galerkin discretizations of firstand second-order systems of conservation laws. A discrete adjoint solution is obtained by a Schurcomplement solver similar to that used in the primal problem. An error estimate is obtained by computing the adjoint on an enriched solution space that consists ...

متن کامل

Mesh Adaptation Strategies for Discontinuous Galerkin Methods Applied to Reactive Transport Problems

Static and dynamic strategies are formulated and studied for discontinuous Galerkin (DG) methods applied to reactive transport problems based on a posteriori error estimators. It is shown that the flexibility of DG allowing non-matching meshes substantially simplifies the implementation of the mesh adaptation. Moreover, DG with adaptivity can effectively capture local physical phenomena due to ...

متن کامل

Time Acceleration Methods for Advection on the Cubed Sphere

Climate simulation will not grow to the ultrascale without new algorithms to overcome the scalability barriers blocking existing implementations. Until recently, climate simulations concentrated on the question of whether the climate is changing. The emphasis is now shifting to impact assessments, mitigation and adaptation strategies, and regional details. Such studies will require significant ...

متن کامل

Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods

A new Petrov-Galerkin approach for dealing with sharp or abrupt field changes in Discontinuous Galerkin (DG) reduced order modelling (ROM) is outlined in this paper. This method presents a natural and easy way to introduce a diffusion term into ROM without tuning/optimising and provides appropriate modeling and stablisation for the numerical solution of high order nonlinear PDEs. The approach i...

متن کامل

Discontinuous Galerkin hp-adaptive methods for multiscale chemical reactors: quiescent reactors

We present a class of chemical reactor systems, modeled numerically using a fractional multistep method between the reacting and diffusing modes of the system, subsequently allowing one to utilize algebraic techniques for the resulting reactive subsystems. A mixed form discontinuous Galerkin method is presented with implicit and explicit (IMEX) timestepping strategies coupled to dioristic entro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 306  شماره 

صفحات  -

تاریخ انتشار 2016